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New Evaluation and Test of Sidewall’s Rotational Stiffness of
Radial Tire
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In this paper, we have revisited the estimation of the rotational stiffness of sidewall of radial

tire and have suggested a new method for evaluation of the rotational stiffness. Since thicknesses,

and volume fractions of the constituents of sidewall are varied depending on radial position, the
equivalent shear modulus of the sidewall also depends on radial position. For the estimation of
rotational stiffness of sidewall’s rubber, we have divided its cross-section into sufficient numbers

of small parts and have calculated the equivalent shear modulus of each part of sidewall. Using

the shear moduli of divided parts, we have obtained the rotational stiffness by employing in-

plane shear deformation theory. This method is expected to be a useful tool in tire design since
it relates such basic variables to the global stiffness of tire. Applying the calculation method to
a radial tire of P205/60R 15, we have compared its rotational stiffness with experimental one.
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Nomenclature

a . Cord angle, Fig. 5

ap . Cord angle at the belt end, Fig. 4

¢ . Meridian angle, Fig. 5

éb . Meridian angle at belt end, Fig. 4

1 . Rim rotational angle, Fig. 1

7,0,z . Coordinates, Fig. 1 and Fig. 6

¥B . r—coordinate of the bead point, Fig. 4
7B . r-coordinate of rim point, Fig. 4

v . r-coordinate of the turning point, Fig. 4
7D . r-coordinate of the belt end, Fig. 4
T : Applied torque, Fig. 1
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1. Introduction

Modern tire structures have evolved through a
series of modifications of the original pneumatic
rubber tire. These modifications were based on
field experiences and on mostly experimental stu-
dies of tire behavior. The use of mathematical
analysis to calculate tire stresses and deformations
remained limited in scope for a long time because
of the complexity of tire structure (Robecchi, 1973 ;
Kennedy et al., 1982).

It is worthwhile to use a simpler tire model of
“spring bedded ring model,” which is consisted
of the sidewall and tread including the belt struc-
ture. This simple model has been used effectively
since Fiala (1954) gave an explicit formula for
cornering characteristics of a running tire. It has
been applied to investigations on riding comfort
(Takayama et al., 1984), vibration (Tielking, 1965 ;
Potts et al., 1977 ; Kamitamari et al., 1985 ; Huang
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et al., 1987 ; Pacejka, 1981 ; Dohrmann, 1998), stand-
ing wave phenomena (Padovan, 1976 ; Chatterjee
et al., 1999), contact pressure distribution (Jenkins,
1982), and rolling resistance (Stutts et al., 1992).
Akasaka et al.(1984) have given an analytical
method for estimating sidewall’s rotational stiff-
ness of radial tire.

In this paper, we have revisited the Akasaka’s
calculation of the rotational stiffness of sidewall
(Akasaka et al., 1984). According to them, the
rotational stiffness of the spring bedded ring
model consists of two parts; one is the stiffness
due to cord tension which is caused by inflation
pressure, the other is the stiffness due to the rub-
ber compounds. However, their calculation of the
latter stiffness seems to be somewhat rough or un-
clear in that they divided the sidewall into three
spans and used shear moduli of the three. This
makes the calculation a rough estimate not only
because it is nearly impossible to sample accurate
test specimens from the real tire due to non-uni-
formity of the cross-section, but also because the
equivalent shear modulus is varied from point to
point due to the non-uniformity of volume frac-
tions of rubber compounds within the cross-sec-
tion. This paper has suggested how to overcome
the drawback by dividing the cross—section into
sufficient numbers of small parts and employing
an equivalent shear modulus of each part of side-
wall. The equivalent shear modulus of each part
is calculated by using thicknesses, material prop-
erties, and volume fractions of rubber compounds
within the part under consideration. Since this
method relates such variables to the rotational
stiffness of sidewall, it can be utilized for deter-
mination of the appropriate values of design vari-
ables for a required stiffness in tire design. Ap-
plying the method to a radial tire of P205/60R 15,
we have compared its rotational stiffness with
experimental one.

2. Theory

The rotational stiffness of the sidewall is de-
fined as

T

when the tread is fixed as shown in Fig. 1.

Assuming that the sidewall is a composite to-
roidal membrane structure under inflation pres-
sure p and considering that the sidewall is com-
posed of fiber-reinforced laminates with rubber
compound matrix as shown in Fig. 2, we can
assume that they take share in the applied torque
T in the manner of

T=TI(c)+T(s) 2)

where T (c) is the torque shared by the carcass
cord and 7 (s) is the torque shared by the rubber
compounds.

wheel rim

~

tire
fized :

Fig. 1 Applied torque 7T and the rotational angle ¥ ;
—_ N
the line ab before deformation becomes ab™

after deformation

rubber compound

section width

Fig. 2 Sidewall as a composite membrane structure
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If the cord is inextensible, it will deform the
contour of sidewall in a manner that the section
width is decreased slightly as shown in Fig. 3.
Therefore, 7 (c) is expressed as

T (c)=2(n) (t) (vp cos ap) (3)

where # is the cord end count, £ is cord tension
under inflation pressure p. The factor of 2 is
multiplied since there are two sidewalls.

Let N denote the shear force per thickness of
sidewall on the cross section at 7, then T (s) is
expressed by

T (s)=202arN) () (4)
From Egs. (1) and (2),
_T(c)+T(s)
R="""y" (5)
=R(c) +R(s)
where
r(o)=Llo (6)
¥
and
R(s) = Tf;) (7)

(b)

Fig. 3 Deformation of sidewall after torque load-
ing; (a) deformation of cord and rubber
compound and (b) the contour of sidewall
before and after torque loading where the
dotted line denotes the contour before defor-
mation and the solid line denotes the contour
after deformation

We will calculate R (c) by using the netting theory
and R (s) by employing in-plane shear deforma-
tion theory.

2.1 Netting theory

The basic assumption of the netting theory is
that the cord is inextensible and always runs along
the geodesic path on the deformed toroidal sur-
face of the sidewall. The relation between the
applied torque 7 (c¢) and the rotation angle ¥
can be obtained by analyzing, under the basic
assumption.

Assuming that the cord is laid along a geodesic
path on the deformed sidewall surface, the side-
wall contour can be expressed by the following
equation (Day and Gehman, 1963):

Z(?’) :/; Dﬁd?’ (8)
where
A= (r2—2)sin ¢p LS00
¢ Dm
B=yv}—7%
and

O=7 COS &= 7p COS Up

Applying Eq. (8) to the real tire of P205/60R15,
we plotted the sidewall contour in Fig. 4.
In Fig. 4, we assume that the interval between

30T T
| D T
¢y y
€ .
E AN
~ . carcass
cord
. _.center
I T R Y PO L e
055‘ 20 230 260 290 lne
r(mm)
Fig. 4 Comparison between carcass cord (dotted

curve) and the curve obtained by Eq.(8)
(solid curve) where 73=222mm, 7c=256
mm, 7,=283.84 mm and @p=>54°
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Fig. 5 Geodesic cord on a toroidal surface

the bead center B* and the point B is firmly con-
nected with the rigid rim, where the relative move-
ment is entirely prevented, and the interval from
B to the belt end D would be a deformable com-
posite toroidal membrane structure under infla-
tion pressure p.

The differential lengths and angle in Fig. 5 are

given by
ds= H—(%) dr :7BZB—A2 dr (9)
_ds _ B 7
dL_Sina_/Bz_AZ N dr  (10)
and
a,wszZ,t:cotfds (11)

Then, we have the cord length

(™ B /2
L=/ e = W

and the rotational angle

y= (rh—7)p
s h/ (B =72)2(r =) —1*(r’—1d)*sin® g sin® ap

dr (13)
Since the cord tension is given by (Robecchi,
1973)

75— 7 (14)

t: rT———
b 7 sin ¢p sin ap

the torque 7 (¢) in Eq. (3) is expressed as

:272'[)717(7’12)—1’5) (15)

T (c) sin éo cot ap

Since the non-linear relationship between rota-
tional angle ¥ and the torque 7 (¢) becomes ap-
parent as ¥ increases, the linear rotational stiff-
ness R (c¢) due to cord tension can be defined by

T (c)/dy at ¥=0. Then

a7 (c) Srot T(c) Shot T(c) St
_orc o)) oap
a}’ 6 C+¢ 6¢D
where
G L L oz
{51’0}2é 0¢p dap  0dp dap Sap (17)
0¢p) 928 OL 9z OL | L d0zs 0z OL |
Orc 0¢p  0fp dav | Orc dap Orc dap

The Eq. (17) is obtained from the fixed condition
at B, §z5=0 and the cord inextensibility, 6L =0.
Solving the nonlinear equation with the given
initial data such as 7¢=222 mm, ¢p=>54° and

dyc;f;) )vl' 0

The partial derivatives involved in Egs. (16) and

ap=r/2, we can determine R (c) =<

(17) are calculated as follows ;

72) (12— 0% — 2 (r*—7$) sin® ¢p sin® au}

0T (¢) _ 4Azmprore
orc  singp cot 2o
0T (¢c) _ _2mpro(r —rc)cot ap cos ¢p
0dp sin® ¢p
0T (¢) __ 2mpro(rd —22)
oap sin ¢ sin? ap
o [ —2p7rc w20(rE—7&) re{ (v —
aVc - 8 l)l/2 d +/

D3/2
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dr

752
oy _ [mr(rb—r2) o(r*—r8)*sin ¢p cos ¢psin’ ap
0pp Iy D??

_76

)37 cos? ap sin ap
dr

o /"D(r —rc)rpsmafpd /‘

— &) rpr (¥*— %)% sin® ¢p sin ap cos® ap

7.D3/2

dap rD'?
g

=—27¢ sin ¢p sin ap X

D3/2

823
37’0

dr

INb

025 ) {f’vr(rz—rg)
=co0s ¢p Sin ap — iz

dr +sin? ¢p sin® a'Df

wy (rP— &) {r*(r*—r¢)?sin’® gp—

v (P2 —vE){(vh — &) (r*— 7 cos® ap) — 2 (»*—#¢)sin’® ¢psin® ap}
DS/Z d?’

oy (rP—7rE)?

2 (.2 . 2\2
i 7’1)(7’1) VC) }di’}

_{_2(71%_73)%/"” r{(#3 —7&) (#¥*— 7B cos® ap) —7* (2 —»2)sin® ¢p sin ozD}
B

oy {(rd —7rE)*rE —r*(r*—»2)*sin® ¢p}

D3/2

dr

3éo " D2
,D 2_ 2

gj’z =sin ¢p cos aDL/TB 7(71)71/276)"‘51112 a’D,/,E

oL _ vy

07¢ - 276—/;3 D'? ar

oL wrd(r*—1¢)*

b= (3 —7&)sin ¢p cos ¢p sin® apf D2 .

gé; =— (7% —72)sin ap cos apfr

where

D= (v} —7¢)%(r*—p?

2.2 In-plane shear deformation theory

From the assumption that the sidewall is a
composite toroidal membrane structure, consider
the in-plane shear deformation of the sidewall
due to torque loading as shown in Fig. 6. The
average shear stress at the cross—section normal to

z cord
b\ T(s) rubber _
Y eompound
(‘__ ‘—“‘*-3,
N R
/ ¢ b N
et
@

Fig. 6 Shear force per thickness on a circumferential
cross—section

IR dr

—72(r*—7%)?sin® ¢p sin® ap

the cord line at distance 7 can be expressed as
(18)

where Geq denotes equivalent shear modulus of

T:Geﬂ’

sidewall and it is expressed as

1
Vo Ve
Gn TG

here V.., and Gi...) are volume fraction and shear

Geq= (19)

modulus of the material in brackets, respectively.
The subscript “m” denotes rubber compound and
“c” denotes cord, respectively.

Then the shear force per thickness (Ngg) is ex-

pressed as
Noo=1h=Geqyh

where 7 is the thickness of sidewall at 7 as shown

(20)

in Fig. 6. The torque 7 (s) in Eq. (4) is expressed
as

T (s) =2X277 Npe=41r2Geayh (21)
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N G

e+ du

Fig. 7 Circumferential displacement # and in-plane
shear strain y

From Eq. (21), we have

T (s)

"= am? Gegh (22)

From the Fig. 7, the shear strain is expressed as

_u_du_ (du _u
Ty T ds <a’r 7)cos¢ (23)

where # is a circumferential displacement.
From Egs. (22) and (23), we have the differen-
tial equation

du _u —T(s)
au _u_ T L1\ 24
dr v  4mcos pGeghr? (24)

whose boundary conditions are
MBZVBTﬁ and uD:O (25)

The the solution of the Eq. (24) with boundary
conditions (25) is

™ T (s)

~Jry 4707 cos dGeah dr (26)

from which we obtain the rotational stiffness due
to shear deformation,
T
R)=T 1 @)
= d
s 477 cos PGegh r

JB—A?

where cos ¢= B

2.3 How to calculate G.q and R (s)

Since Geq, cos ¢ and % in Eq. (27) are implicit
functions of 7, it is impossible to integrate Eq.
(27) analytically. Consider a certain cross—sec-
tion of sidewall shown in Fig. 8. Dividing the
cross—section of sidewall, by using lines normal to

Z sidewall( V3, Gua,) n
b

eord( Vil Gooa)

k—th part

innerliner( VIS G....)

mmert

_!/ —— T
g T 7_." Tha

Fig. 8 Rubber compound laminates in the k-th part
of the sidewall

the carcass cord line, into M parts as shown in
Fig. 8, we measured the volume fractions of each
rubber compound in the ~-th part (V{%)), the
radial coordinates of intersections between car-
cass cord line and the normal lines to the cord
line 7, and #4+1), and the thickness (%) of the
k~th part in the normal direction to carcass cord
at ¥r=7,= (r2+7es1) /2,

Using the volume fractions of rubber com-
pounds, the equivalent shear modulus of the %.-th
part can be expressed as follows (Jones, 1975):

1
- k k k k k
Vibse | Vi | Vimer | Viddeass | Vio

T T T T
Gapex  Gsite Gamer  Gegregss ~ Geord

(Geq) » (28)

where Gi...; denotes shear moulus of the material
in brackets.

Since the value of Vi /Geore in the deno-
minator is so small that it can be negligible, Eq.
(28) can be written as

1
k k k k
Vzgpgx + I/s(uze + Vigm)er + I/c(mzcass
Gapex Gside Gilmer Gcarcass

(Geg) w= (29)

Assuming the rubber compound is an isotropic
material, we have

Gri=> By (30)

2(1+vn)
where E\...; denotes Young’ modulus of the ma-
terial in the brackets and vy, denotes Poisson’s
ratio of rubber compounds, which is assumed as
0.49.

Using numerical integration by the trapezoidal
rule, Eq. (27) can be written as
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calculation domain

carcass —e— |-

o= !
Z

|
N Ty ; /’ h. \
il

T_. r inner-liner

Fig. 9 Structure of sidewall and division of the cal-
culation domain in the sidewall

|

R(s)=x P (31)
> e
k=1 477(77k>3(Geq) khk COS ¢k
where
= Vet Vrs1
2
Gk ((7s)*= )<£ )2) sin? ¢p sin’ ap
08 $p= T ok ¢

and /i, is the thickness of the A-th part in the
normal direction to carcass cord at 7 =7 .

The division of the cross—section of sidewall
into parts is shown in Fig. 9.

3. Experiments

A radial tire of P205/60R15 was used for the
experimental study. Fig. 10 shows the picture of
experimental apparatus equipped with a concrete
block having a hole of tire size along which the
tread of the tire specimen is fixed. The torque
loading is applied by using UTM (universal test
machine). We attached one end of wire to a point
on the periphery of the rotational disk and con-
nected the other end of wire to the grip of UTM.
Pulling the wire by UTM rotates the disk and the
wheel rim. At same time the UTM records the
applied force (F) and displacement (§). The ap-
plied force () elongates the wire and deforms

: wheel rim

conerete block tire

Fig. 10

(a) Schematic and (b) photo of the appara-

tus for measurement of rotational stiffness of
sidewall

Fig. 11

(a) Rotational disk and wire, and (b) mo-
delling of the deformation of wire-sidewall

the sidewall of tire. Thus, the displacement (&) is
consisted of the elongation of wire (Jy,) and the
displacement due to the deformation of sidewall
(8:), that is,

0=0w+0: (32)

The mechanical system can be modelled by springs
as shown in Fig. 11(b), where k; is a spring con-
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250 Table 1 The stiffness of wire-sidewall, K (kN/m)
200 Inflation pressure, Stiffness of wire-sidewall,
_ p (kgf/cm?) K (kN/m)
Z 150
2 2.5 63.52
S 100 K =63.27kN/m 24 63.40
50 2.2 63.27
2.0 63.14
0
0 1 2 a3 4 1.75 62.93
Displacement (mm) 1.50 62.74
Fig. 12 Tensile test result of wire-sidewall under the 1.25 62.26
e 5
inflation pressure, 2.2 kgf/cm 1.00 61.99
0.75 61.56
250
0.50 61.06
200
150 From Egs. (32) and (34), we have
=
= ) I 0—20
k-] — (G8.02 kN/ _ w
§ 100 K, = 68.02 kN/m l/,_*f (37)
50 . .
From Egs. (34) and (37), the rotational stiffness
0 of sidewall is expressed by

Displacement {(mm}
Fig. 13 Load (F)-displacement (J,) from tensile
test of the wire

stant of sidewall and /. is a spring constant of the
wire.

The torque about the tire center due to the force
(F) is given by

T=Fr (33)

where 7 is the radius shown in Fig. 11(a). The
applied torque causes angular deformation of the
sidewall, ¥. The displacement along the periphery
due to the angular displacement is

Se=7ry (34>

The relationship between the applied force and
displacement is given by

F=K6=Kt6t=kw5w (35)

where K is the equivalent spring constant of the
system and is given by

1 1

_ 1.1
Kk T (36)

_ T _F(#)?
R= = 5—6u (38)
Eq. (38) is rewritten, by using Eq. (35), as
_ Kkw -\
R= Kk () (39

where the spring constant K can be measured
from the rotational test, and the constant %, from
a separate tensile test of wire. The radius, 7 can
be also obtained from the apparatus. Then, we
can calculate the rotational stiffness of sidewall
by using Eq. (39). The test results for the spring
constants K and k&, are shown in Figs. 12-13 and
Table 1.

4. Results and Discussion

Young’s modulus of each rubber compound is
obtained from the tensile tests of specimens, which
are sampled from real tire (Kim et al., 2003). All
the necessary geometrical data including volume
fractions can be obtained directly from the geom-
etry of tire. Then, we can calculate equivalent shear
modulus of each part of the sidewall by using
Egs. (29) and (30), and the rotational stiffness
R (s) by using Eq. (31). The values of R(s) in
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a0 |
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£
=
=20
0
T

10

0
0 20 40 60 80 100

Number of divisions
Fig. 14 Rotational stiffness of the sidewall due to
rubber compound versus number of divi-

sions

@
S

=
=

n
=]

+ Experiment

—Presenl

Rotational stiffness (kNm/rad)

=]

0.5 1.0 I_l5 2.0 2.5
Pressure (kaf/em®)

Fig. 15 Rotational stiffness of sidewall of the radial

tire

terms of the number of divisions are plotted in
Fig. 14, which shows that the value of converges
to a certain value as the number of divisions in-
creases. This is because refined discretization cal-
culates the geometry of sidewall and the equiva-
lent shear modulus precisely at each part.

For the calculation domain divided into 100
parts, the total rotational stiffness R=R(c) + R
(s) in terms of inflation pressure p is plotted in
Fig. 15 with experimental ones and their values
are compared in Table 2. Fig. 15 shows that there
is some difference between theoretical prediction
and experimental values.

The main reasons of the discrepancy may be
originated from the following facts. Because the
specimens of rubber sheets are so tricky to sepa-
rate from real tire without any flaws, their Young’s
moduli might be estimated lower than the values
of real ones (Kim et al., 2003) . Secondly, the side-
wall contour given by Eq. (8) cannot describe the

Table 2 Comparison of the rotational stiffness in

Fig. 15
Inflation Rotational stiffness, £ (kNm/rad)
pressure,

p (kgf/cm?) Experiment Present
2.50 57.7 51.8
2.40 56.1 50.7
2.20 54.4 48.6
2.00 52.9 46.7
1.75 50.5 44.3
1.50 48.6 41.7
1.25 44.2 38.8
1.00 42.0 36.7
0.75 39.0 343
0.50 35.8 31.8

110

(@ .
100 (9p) rEaL
"
D
90 N k‘\o

. AR g (5)
£ bl :R
g. realistic contour
n TOF |

("fﬁ H] PRESENT {
carcass cord

10 L e e
210 2200 230 240 250 260 270 280 200 300
r(mm)
Fig. 16 Comparison between the theoretical side-

wall contour obtained by Eq.(8) and a
realistic contour

real contour accurately near the point B as shown
in Fig. 16, which causes the value of cos ¢ in Eq.
(27) to be estimated higher and the rubber stiff-
ness (R (s)) to be lower than real one. Addition-
ally, the theoretical contour gives longer cord
length (L) than the real one due to the same rea-
son, which causes the cord stiffness (R (c)) to be
evaluated lower than real value. Therefore, the
theoretical sidewall contour near the point B is
the one of main reasons why the present results
are lower than the experimental ones. It is requir-
ed to devise a new accurate sidewall contour to
reduce the difference between theoretical predic-
tion and experimental values of rotational stiff-
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ness of sidewall.

5. Conclusions

This paper has considered the calculation of side-
wall’s rotational stiffness of radial tire, which is
consisted of cord stiffness and rubber compound
stiffness. Focusing on the calculation of the stiff-
ness of rubber compound, a new calculation method
is suggested, which employs an equivalent shear
modulus. Since the equivalent shear modulus is
different from point to point due to the geometric
non-uniformity, we divide the cross-section into
sufficient number of parts and calculate the equi-
valent shear modulus of each part by using the
shear moduli and volume fractions of rubber com-
pounds of the part. The present method provides
clearer way of estimation of shear modulus of
sidewall than the conventional one, on which was
mentioned in Introduction. Moreover, the present
method relates the material properties, volume
fractions and thicknesses of rubber compounds
to the rotational stiffness, it can be used as a prac-
tical tool for a design of tire. But there is still some
difference between the present prediction and ex-
perimental values of rotational stiffness, which
may be arisen from the discrepancy between the-
oretical sidewall contour and real contour of
sidewall and further research on sidewall contour
is required.
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